Changes

From Terrain Wiki
Jump to navigationJump to search
Line 38: Line 38:  
Vitamins are absolutely essential in our diet—make no mistake about that. But, if we’re on a proper diet of mostly fruits with some vegetables, nuts and seeds, we do not have to worry any more about vitamins or other nutrients than we have to worry about each heartbeat, the secretion of bile, or millions of other physiological processes.
 
Vitamins are absolutely essential in our diet—make no mistake about that. But, if we’re on a proper diet of mostly fruits with some vegetables, nuts and seeds, we do not have to worry any more about vitamins or other nutrients than we have to worry about each heartbeat, the secretion of bile, or millions of other physiological processes.
   −
=== Hygienic Perspectives On Vitamins Compared With Medical Perspectives — Marti Fry ===
+
==== Hygienic Perspectives On Vitamins Compared With Medical Perspectives — Marti Fry ====
 
As this is a course not just in nutritional science, but also in Natural Hygiene, or Life Science, it is appropriate that we point out how the Hygienic perspective on the subject of vitamins differs from the generally accepted conventional perspective.
 
As this is a course not just in nutritional science, but also in Natural Hygiene, or Life Science, it is appropriate that we point out how the Hygienic perspective on the subject of vitamins differs from the generally accepted conventional perspective.
   −
====== Attempts To Be Scientific ======
+
===== Attempts To Be Scientific =====
 
Thanks to scientific research and experimentation, we have learned a great deal about vitamins (and other nutrients). In fact, thanks to the efforts of “science,” we have “discovered” the existence of vitamins. We are now able to make a large variety of statements about vitamins—their functions in the body, approximate amounts needed and many other interesting facts.
 
Thanks to scientific research and experimentation, we have learned a great deal about vitamins (and other nutrients). In fact, thanks to the efforts of “science,” we have “discovered” the existence of vitamins. We are now able to make a large variety of statements about vitamins—their functions in the body, approximate amounts needed and many other interesting facts.
   Line 48: Line 48:  
The point is that “science” does not always do the favors for humanity that they lead most of us to believe they do. Much suffering has stemmed from “scientific meddling” in the regular order of nature. This is not to condemn the efforts of scientists as much as it is to enlighten students of nutritional science of certain realities. We are not saying that scientists should stop studying phenomena, but that their approach and motives ought to be changed so that humans are truly benefitted by their efforts instead of allowed to believe they are benefitted while much suffering and harm is done. A shockingly high portion of scientific study is done to discover new drugs (poisons) to “cure” diseases, when, in fact, diseases cannot be “cured.” The causes of disease must be removed and then the body will spontaneously heal without interference by drugs, medications, herbs, colonies or anything else.
 
The point is that “science” does not always do the favors for humanity that they lead most of us to believe they do. Much suffering has stemmed from “scientific meddling” in the regular order of nature. This is not to condemn the efforts of scientists as much as it is to enlighten students of nutritional science of certain realities. We are not saying that scientists should stop studying phenomena, but that their approach and motives ought to be changed so that humans are truly benefitted by their efforts instead of allowed to believe they are benefitted while much suffering and harm is done. A shockingly high portion of scientific study is done to discover new drugs (poisons) to “cure” diseases, when, in fact, diseases cannot be “cured.” The causes of disease must be removed and then the body will spontaneously heal without interference by drugs, medications, herbs, colonies or anything else.
   −
====== The Scientific Approach to Vitamin Study ======
+
===== The Scientific Approach to Vitamin Study =====
 
A look in physiology and nutrition texts shows that, while many facts about vitamins have been discovered, much more is unknown than is known. Not only that, but much of what is “known” is based on studies in which many animals and some humans have had to suffer. The rationale is that, in the long run, a greater number of living creatures, especially humans, will suffer less due to the greater store of knowledge.
 
A look in physiology and nutrition texts shows that, while many facts about vitamins have been discovered, much more is unknown than is known. Not only that, but much of what is “known” is based on studies in which many animals and some humans have had to suffer. The rationale is that, in the long run, a greater number of living creatures, especially humans, will suffer less due to the greater store of knowledge.
   Line 59: Line 59:  
As stated in Lesson 5, a tiny cell has more intelligence than a team of scientists seeking “cures.”
 
As stated in Lesson 5, a tiny cell has more intelligence than a team of scientists seeking “cures.”
   −
====== The Deficiency Approach to Vitamin Study ======
+
===== The Deficiency Approach to Vitamin Study =====
 
Perhaps the most revolting aspect of the medical/scientific approach to vitamin study is the preoccupation with deficiencies, and especially with deficiency diseases. The grotesque photos in texts of people suffering with various “deficiency diseases” graphically illustrate the distorted perception the medical scientists have of the role of vitamins—“to prevent horrible deficiency diseases.” That whole concept of “prevention” is erroneous, as has been stated in earlier lessons. Deficiency diseases are not normal or natural and do not have to be “prevented.” We have only to live in accord with the laws of life and nature, and we will be healthy—as nature intended.
 
Perhaps the most revolting aspect of the medical/scientific approach to vitamin study is the preoccupation with deficiencies, and especially with deficiency diseases. The grotesque photos in texts of people suffering with various “deficiency diseases” graphically illustrate the distorted perception the medical scientists have of the role of vitamins—“to prevent horrible deficiency diseases.” That whole concept of “prevention” is erroneous, as has been stated in earlier lessons. Deficiency diseases are not normal or natural and do not have to be “prevented.” We have only to live in accord with the laws of life and nature, and we will be healthy—as nature intended.
    
A conventional/medical study of vitamins, as presented in textbooks, leads people to think in terms of deficiencies when they think about vitamins. But the study of vitamins should not be a study of deficiency diseases; it should be primarily a study of their role in human nutrition. In fact, identifying individual vitamins and naming the deficiency, disease connected with the lack of each is totally unnecessary. All we really need to know is that they are present in sufficient quantities in natural foods and that we will meet our needs for them on a natural diet of fruits, vegetables, nuts, sprouts and seeds. It is also well to realize that food processing, storage and preservation destroy vitamins in foods and that drugs and drug-like substances deplete vitamins in the body and interfere with their absorption and utilization.
 
A conventional/medical study of vitamins, as presented in textbooks, leads people to think in terms of deficiencies when they think about vitamins. But the study of vitamins should not be a study of deficiency diseases; it should be primarily a study of their role in human nutrition. In fact, identifying individual vitamins and naming the deficiency, disease connected with the lack of each is totally unnecessary. All we really need to know is that they are present in sufficient quantities in natural foods and that we will meet our needs for them on a natural diet of fruits, vegetables, nuts, sprouts and seeds. It is also well to realize that food processing, storage and preservation destroy vitamins in foods and that drugs and drug-like substances deplete vitamins in the body and interfere with their absorption and utilization.
   −
=== Introduction ===
+
== Introduction ==
==== Definition of Vitamins ====
+
=== Definition of Vitamins ===
 
Vitamins are organic compounds which the body needs to function normally. They cannot be manufactured by the body (with few exceptions); therefore, they must be supplied by food. In their absence, disease will develop.
 
Vitamins are organic compounds which the body needs to function normally. They cannot be manufactured by the body (with few exceptions); therefore, they must be supplied by food. In their absence, disease will develop.
   −
==== Discovery of Vitamins ====
+
=== Discovery of Vitamins ===
 
The first vitamin was discovered in 1897 by a Dutch biologist named Eijkman. He found that when bran was removed from rice, people consuming the refined rice developed beriberi, a serious disease. Eijkman also observed that when people ate the rice with the bran intact, no beriberi resulted. This finding directed Eijkman and other scientists to chemically analyze rice for the substance which, when not present in adequate amounts, resulted in the development of beriberi. Thiamine, named vitamin B1, was discovered to be this mystery substance.
 
The first vitamin was discovered in 1897 by a Dutch biologist named Eijkman. He found that when bran was removed from rice, people consuming the refined rice developed beriberi, a serious disease. Eijkman also observed that when people ate the rice with the bran intact, no beriberi resulted. This finding directed Eijkman and other scientists to chemically analyze rice for the substance which, when not present in adequate amounts, resulted in the development of beriberi. Thiamine, named vitamin B1, was discovered to be this mystery substance.
    
In the following years, scientists found that there are many chemicals in food which are necessary for maintenance of health. One by one, as they were discovered, names were given to these chemicals As a group, they were named “vitamins.”
 
In the following years, scientists found that there are many chemicals in food which are necessary for maintenance of health. One by one, as they were discovered, names were given to these chemicals As a group, they were named “vitamins.”
   −
==== Sources of Vitamins ====
+
=== Sources of Vitamins ===
 
It is crucial to understand that scientists have not isolated every substance in food that is essential for normal functioning of the body. Thus, we must depend on food, not vitamin pills, for good nutrition. There is no vitamin pill that contains all the vitamins the body needs.
 
It is crucial to understand that scientists have not isolated every substance in food that is essential for normal functioning of the body. Thus, we must depend on food, not vitamin pills, for good nutrition. There is no vitamin pill that contains all the vitamins the body needs.
   −
==== Function of Vitamins ====
+
=== Function of Vitamins ===
 
Vitamins function in the body as coenzymes. To understand this function, consider an analogy. Suppose you were trying to build a house. The size of the house is strictly limited by your budget. You begin the process by buying the major raw materials: cement, wood and outdoor siding material. Once you have laid the foundation and framed the walls, you go to the store and buy all the windows you need. The number of windows is obviously limited by the spaces you have built in the walls for windows. For proper function of the house, you need windows.
 
Vitamins function in the body as coenzymes. To understand this function, consider an analogy. Suppose you were trying to build a house. The size of the house is strictly limited by your budget. You begin the process by buying the major raw materials: cement, wood and outdoor siding material. Once you have laid the foundation and framed the walls, you go to the store and buy all the windows you need. The number of windows is obviously limited by the spaces you have built in the walls for windows. For proper function of the house, you need windows.
    
Vitamins are like the windows in the house. Your body has a need for vitamins (windows) when it is trying to manufacture something: new tissue, energy, etc. (a house). Your body determines the exact amount it wishes to produce and brings together just enough raw materials for the purpose of construction (cement, wood, etc.). The body manufactures the necessary amount of apoenzyme (window frame) to combine with the vitamin coenzyme (window) to form an active enzyme. The active enzyme then makes a chemical reaction progress quickly (it catalyzes the reaction) leading to the formation of the desired end-product.
 
Vitamins are like the windows in the house. Your body has a need for vitamins (windows) when it is trying to manufacture something: new tissue, energy, etc. (a house). Your body determines the exact amount it wishes to produce and brings together just enough raw materials for the purpose of construction (cement, wood, etc.). The body manufactures the necessary amount of apoenzyme (window frame) to combine with the vitamin coenzyme (window) to form an active enzyme. The active enzyme then makes a chemical reaction progress quickly (it catalyzes the reaction) leading to the formation of the desired end-product.
   −
==== Vitamins Are Inert ====
+
=== Vitamins Are Inert ===
 
“Vitamin function” is a commonly used phrase, as is “vitamin action.” Yet these expressions convey a misconception Vitamins cannot act, since they are inert chemical substances. In any and all physiological processes, it is the body that acts. Vitamins are used by the body for many purposes. Usually, vitamins combine chemically with other substances, thereby fulfilling the mandate of the body. It is crucial to remember that it is the body that acts on the vitamin, not the vitamin that acts on the body.
 
“Vitamin function” is a commonly used phrase, as is “vitamin action.” Yet these expressions convey a misconception Vitamins cannot act, since they are inert chemical substances. In any and all physiological processes, it is the body that acts. Vitamins are used by the body for many purposes. Usually, vitamins combine chemically with other substances, thereby fulfilling the mandate of the body. It is crucial to remember that it is the body that acts on the vitamin, not the vitamin that acts on the body.
   −
==== Vitamins Work Together and With Other Nutrients ====
+
=== Vitamins Work Together and With Other Nutrients ===
 
Although this lesson discusses vitamins exclusively, it is important to realize that vitamins do not function alone or in a vacuum within the body. Vitamins work together; for instance, production of energy by the body when food is burned in the cells depends not only on vitamin B1, but also on vitamins B2 and niacin.
 
Although this lesson discusses vitamins exclusively, it is important to realize that vitamins do not function alone or in a vacuum within the body. Vitamins work together; for instance, production of energy by the body when food is burned in the cells depends not only on vitamin B1, but also on vitamins B2 and niacin.
    
Furthermore, vitamins work together with all other nutrients such as fats, carbohydrates and proteins. For instance, vitamin B6 is needed for the normal metabolism of protein. So, even though this is a lesson on vitamins, don’t think of vitamins alone when you consider the functioning of the body. Vitamins are only one small part of the metabolic machinery of the body.
 
Furthermore, vitamins work together with all other nutrients such as fats, carbohydrates and proteins. For instance, vitamin B6 is needed for the normal metabolism of protein. So, even though this is a lesson on vitamins, don’t think of vitamins alone when you consider the functioning of the body. Vitamins are only one small part of the metabolic machinery of the body.
   −
=== A Study Of Each Individual Vitamin ===
+
== A Study Of Each Individual Vitamin ==
 
The discovered vitamins will be studied one by one. You will learn about their discovery, measurement, chemistry, physiology, functions, requirements, sources, effects of deficiency and effects of excess.
 
The discovered vitamins will be studied one by one. You will learn about their discovery, measurement, chemistry, physiology, functions, requirements, sources, effects of deficiency and effects of excess.
   −
==== The Fat-Soluble Vitamins ====
+
=== The Fat-Soluble Vitamins ===
 
Vitamins can be categorized according to their properties. The two basic groupings of vitamins are the fat-soluble vitamins (A, D, E and K) and the water-soluble vitamins (vitamin C and the B-complex vitamins).
 
Vitamins can be categorized according to their properties. The two basic groupings of vitamins are the fat-soluble vitamins (A, D, E and K) and the water-soluble vitamins (vitamin C and the B-complex vitamins).
   Line 101: Line 101:  
# A text which states that the fat-soluble vitamins are stored in the body but that water-soluble vitamins are not goes on to state in a later chapter that vitamin C, a water-soluble vitamin, can be stored. They state, “It has been shown that human beings are able to store some vitamin C; healthy, well-fed subjects store about 1500 mg. On vitamin C deprivation diets, these stores are used at an average rate of three percent of the existing reserve (pool) per day and supply the body with vitamin C for a period of about three months.” As you can see, significant amounts of this vitamin can be stored in the body.
 
# A text which states that the fat-soluble vitamins are stored in the body but that water-soluble vitamins are not goes on to state in a later chapter that vitamin C, a water-soluble vitamin, can be stored. They state, “It has been shown that human beings are able to store some vitamin C; healthy, well-fed subjects store about 1500 mg. On vitamin C deprivation diets, these stores are used at an average rate of three percent of the existing reserve (pool) per day and supply the body with vitamin C for a period of about three months.” As you can see, significant amounts of this vitamin can be stored in the body.
   −
===== Vitamin A =====
+
==== Vitamin A ====
 
# '''Discovery'''. This fat-soluble vitamin was discovered by McCollum and Davis of the University of Wisconsin and by Osborne and Mendel of Yale University in 1913. They found that rats on a diet with lard as the only source of fat developed eye problems and failed to grow. It was later found that a shortage of carotene, the yellow pigment of plants, led to the development of these problems. Carotene is converted into vitamin A within the organism.
 
# '''Discovery'''. This fat-soluble vitamin was discovered by McCollum and Davis of the University of Wisconsin and by Osborne and Mendel of Yale University in 1913. They found that rats on a diet with lard as the only source of fat developed eye problems and failed to grow. It was later found that a shortage of carotene, the yellow pigment of plants, led to the development of these problems. Carotene is converted into vitamin A within the organism.
 
# '''Measurement'''. Vitamin A is measured in international units. A complicated formula exists whereby micro-grams (1/millionth gram) of vitamins are converted into international units (IUs). Amounts of vitamin A in foods and requirements for this vitamin are expressed as IUs.
 
# '''Measurement'''. Vitamin A is measured in international units. A complicated formula exists whereby micro-grams (1/millionth gram) of vitamins are converted into international units (IUs). Amounts of vitamin A in foods and requirements for this vitamin are expressed as IUs.
Line 112: Line 112:  
# '''Effects of Excess'''. Intake of excess vitamin A results in toxicity (poisoning), causing a loss of appetite, increased irritability, drying and flaking of skin, loss of hair, bone and joint pain, bone fragility, headaches and enlargement of liver and spleen. An overdose of this vitamin is about 50,000 IUs per day in adults and 20,000 IU's in infants.
 
# '''Effects of Excess'''. Intake of excess vitamin A results in toxicity (poisoning), causing a loss of appetite, increased irritability, drying and flaking of skin, loss of hair, bone and joint pain, bone fragility, headaches and enlargement of liver and spleen. An overdose of this vitamin is about 50,000 IUs per day in adults and 20,000 IU's in infants.
   −
===== Vitamin D =====
+
==== Vitamin D ====
 
# '''Discovery'''. Vitamin D was chemically isolated in food in 1930. For hundreds of years previous to the 20th century, people had used cod liver oil to supply, a factor which the body needed to maintain normal bone structure. Scientists in the 1900s were able to identify vitamin D as the necessary substance.
 
# '''Discovery'''. Vitamin D was chemically isolated in food in 1930. For hundreds of years previous to the 20th century, people had used cod liver oil to supply, a factor which the body needed to maintain normal bone structure. Scientists in the 1900s were able to identify vitamin D as the necessary substance.
 
# '''Measurement'''. Vitamin D requirements and the amounts present in foods are expressed in international units. One international unit (IU) of vitamin D is equal to 0.025 meg (a meg is one millionth of a gram) of vitamin D.
 
# '''Measurement'''. Vitamin D requirements and the amounts present in foods are expressed in international units. One international unit (IU) of vitamin D is equal to 0.025 meg (a meg is one millionth of a gram) of vitamin D.
Line 123: Line 123:  
# '''Effects of excess'''. Excess vitamin D results in nausea, diarrhea, loss of weight, frequent urination, all in mild cases; kidney damage, calcium deposits with damage to the heart, blood vessels and other tissue, in severe cases. A dose of vitamin D approximately 100 times the amount needed will cause poisoning and the above symptoms.
 
# '''Effects of excess'''. Excess vitamin D results in nausea, diarrhea, loss of weight, frequent urination, all in mild cases; kidney damage, calcium deposits with damage to the heart, blood vessels and other tissue, in severe cases. A dose of vitamin D approximately 100 times the amount needed will cause poisoning and the above symptoms.
   −
===== Vitamin E =====
+
==== Vitamin E ====
 
# '''Discovery'''. Shortage of another organic compound which dissolves in fat solvents was discovered in 1922 to result in destruction of the fetus in the uterus of animals. In 1936 vitamin E was chemically isolated as this substance.
 
# '''Discovery'''. Shortage of another organic compound which dissolves in fat solvents was discovered in 1922 to result in destruction of the fetus in the uterus of animals. In 1936 vitamin E was chemically isolated as this substance.
 
# '''Measurement'''. Amounts of vitamin E are expressed as international units(IU's).OneIU is equal to 1 mg (1/1000th gram) of vitamin E.
 
# '''Measurement'''. Amounts of vitamin E are expressed as international units(IU's).OneIU is equal to 1 mg (1/1000th gram) of vitamin E.
Line 133: Line 133:  
# '''Effects of excess'''. Excess intake of vitamin E, long thought to be harmless, has now been implicated in the causation of cholesterol deposits in blood vessels, elevated blood fat levels, interference in the blood-clotting process, enhanced growth of lung tumors, interference with vitamin A and iron, disturbances of the gastrointestinal tract, skin rashes, interference with thyroid gland function and damage to muscles. Megadoses of vitamin E are certainly not to be considered harmless.
 
# '''Effects of excess'''. Excess intake of vitamin E, long thought to be harmless, has now been implicated in the causation of cholesterol deposits in blood vessels, elevated blood fat levels, interference in the blood-clotting process, enhanced growth of lung tumors, interference with vitamin A and iron, disturbances of the gastrointestinal tract, skin rashes, interference with thyroid gland function and damage to muscles. Megadoses of vitamin E are certainly not to be considered harmless.
   −
===== Vitamin K =====
+
==== Vitamin K ====
 
# '''Discovery'''. Vitamin K was discovered in 1935. A doctor in Scandinavia found that this substance was necessary for normal clotting of the blood.
 
# '''Discovery'''. Vitamin K was discovered in 1935. A doctor in Scandinavia found that this substance was necessary for normal clotting of the blood.
 
# '''Measurement'''. Amounts of vitamin K are expressed as micrograms, one millionth of a gram.
 
# '''Measurement'''. Amounts of vitamin K are expressed as micrograms, one millionth of a gram.
Line 144: Line 144:  
# '''Effects of excess'''. The effects of excess vitamin K are unknown.
 
# '''Effects of excess'''. The effects of excess vitamin K are unknown.
   −
==== The Water-Soluble Vitamins ====
+
=== The Water-Soluble Vitamins ===
   −
===== Vitamin C =====
+
==== Vitamin C ====
 
# '''Discovery'''. Vitamin C, also known as ascorbic acid, was isolated chemically in 1932 at the University of Pittsburgh. Feeding this organic compound was found to prevent scurvy. Almost 200 years previous to the chemical identification of vitamin C, Dr. James Lind, a British physician, found that scurvy would not occur if citrus fruits were consumed.
 
# '''Discovery'''. Vitamin C, also known as ascorbic acid, was isolated chemically in 1932 at the University of Pittsburgh. Feeding this organic compound was found to prevent scurvy. Almost 200 years previous to the chemical identification of vitamin C, Dr. James Lind, a British physician, found that scurvy would not occur if citrus fruits were consumed.
 
# '''Measurement'''. Amounts of vitamin C are expressed in milligrams, 1/1000th of a gram.
 
# '''Measurement'''. Amounts of vitamin C are expressed in milligrams, 1/1000th of a gram.
Line 157: Line 157:  
# Effects of excess. Excess vitamin C, even though water-soluble and so not stored in large amounts in the body, can be harmful to your health. Problems include destruction of red blood cells; irritation of the intestinal lining; kidney stone formation; interference with iron, copper, vitamin A and bone mineral metabolism; interference with the reproductive tract, causing infertility and fetal death; diabetes; and, believe it or not, scurvy. Intake of excess amounts of vitamin C, as with most vitamins, is only possible when pills or crystals are taken.
 
# Effects of excess. Excess vitamin C, even though water-soluble and so not stored in large amounts in the body, can be harmful to your health. Problems include destruction of red blood cells; irritation of the intestinal lining; kidney stone formation; interference with iron, copper, vitamin A and bone mineral metabolism; interference with the reproductive tract, causing infertility and fetal death; diabetes; and, believe it or not, scurvy. Intake of excess amounts of vitamin C, as with most vitamins, is only possible when pills or crystals are taken.
   −
===== Vitamin B1 =====
+
==== Vitamin B1 ====
 
# '''Discovery'''. The existence of vitamin B1, also known as thiamine, was first theorized in 1897 by a Dutch doctor who found that eating polished rice would result in a serious disease called beriberi. When unpolished and unrefined rice was eaten, however, beriberi did not develop. In the 1920s and 1930s, thiamine was chemically isolated from rice bran.
 
# '''Discovery'''. The existence of vitamin B1, also known as thiamine, was first theorized in 1897 by a Dutch doctor who found that eating polished rice would result in a serious disease called beriberi. When unpolished and unrefined rice was eaten, however, beriberi did not develop. In the 1920s and 1930s, thiamine was chemically isolated from rice bran.
 
# '''Measurement'''. Amounts of vitamin B1 are expressed in milligrams(mg),1/1000th of a gram, or micro-grams (meg), 1/millionth of a gram.
 
# '''Measurement'''. Amounts of vitamin B1 are expressed in milligrams(mg),1/1000th of a gram, or micro-grams (meg), 1/millionth of a gram.
Line 167: Line 167:  
# '''Effects of excess'''. The problems which develop when excess vitamin B1 is consumed have not been investigated. We can be sure, however, that problems will result when “megadoses” are ingested.
 
# '''Effects of excess'''. The problems which develop when excess vitamin B1 is consumed have not been investigated. We can be sure, however, that problems will result when “megadoses” are ingested.
   −
===== Vitamin B2 =====
+
==== Vitamin B2 ====
 
# '''Discovery'''. In the late 1920s and early 1930s, scientists discovered a substance in food which the body needed for normal nervous system function. This substance was chemically identified and named riboflavin, also called vitamin B2.
 
# '''Discovery'''. In the late 1920s and early 1930s, scientists discovered a substance in food which the body needed for normal nervous system function. This substance was chemically identified and named riboflavin, also called vitamin B2.
 
# '''Measurement'''. As with thiamine, amounts of riboflavin are expressed as milligrams or micrograms.
 
# '''Measurement'''. As with thiamine, amounts of riboflavin are expressed as milligrams or micrograms.
Line 177: Line 177:  
# '''Effects of excess'''. Symptoms of excess in take of riboflavin have not been clearly elucidated.
 
# '''Effects of excess'''. Symptoms of excess in take of riboflavin have not been clearly elucidated.
   −
===== Niacin =====
+
==== Niacin ====
 
# '''Discovery'''. Niacin deficiency disease, called pellagra, was written about hundreds of years ago. It was not until the 20th century, however, that this disease was related to a dietary deficiency. This took place when a researcher placed subjects on a diet identical to that which caused pellagra-type symptoms in certain groups of people in the South. When these symptoms occurred in the experimental subjects, the researcher concluded that pellagra is a deficiency disease. Soon after, other scientists found that niacin was the missing link.
 
# '''Discovery'''. Niacin deficiency disease, called pellagra, was written about hundreds of years ago. It was not until the 20th century, however, that this disease was related to a dietary deficiency. This took place when a researcher placed subjects on a diet identical to that which caused pellagra-type symptoms in certain groups of people in the South. When these symptoms occurred in the experimental subjects, the researcher concluded that pellagra is a deficiency disease. Soon after, other scientists found that niacin was the missing link.
 
# '''Measurement'''. Amounts of niacin are expressed in milligrams.
 
# '''Measurement'''. Amounts of niacin are expressed in milligrams.
Line 188: Line 188:  
# '''Effects of excess'''. Intake of excess niacin has been found to cause liver damage, high levels of blood sugar, unsafe levels of uric acid in the bloodstream, and gastrointestinal distress (“stomachache”).
 
# '''Effects of excess'''. Intake of excess niacin has been found to cause liver damage, high levels of blood sugar, unsafe levels of uric acid in the bloodstream, and gastrointestinal distress (“stomachache”).
   −
===== Vitamin B6 =====
+
==== Vitamin B6 ====
 
# '''Discovery'''. A deficiency of vitamin B6, or pyridoxine, was first produced in animals in 1926. In. 1938, this vitamin was isolated from food and identified. In 1939, scientists synthesized it in the laboratory.
 
# '''Discovery'''. A deficiency of vitamin B6, or pyridoxine, was first produced in animals in 1926. In. 1938, this vitamin was isolated from food and identified. In 1939, scientists synthesized it in the laboratory.
 
# '''Measurement'''. Amounts of vitamin B6 are expressed in micrograms or milligrams.
 
# '''Measurement'''. Amounts of vitamin B6 are expressed in micrograms or milligrams.
Line 198: Line 198:  
# '''Effects of excess'''. Generalized symptoms of toxicity (poisoning) have been recorded in  rats upon intake of excess vitamin B6. Future research will certainly find damage in human beings from intake of excess vitamin B6.
 
# '''Effects of excess'''. Generalized symptoms of toxicity (poisoning) have been recorded in  rats upon intake of excess vitamin B6. Future research will certainly find damage in human beings from intake of excess vitamin B6.
   −
===== Pantothenic Acid =====
+
==== Pantothenic Acid ====
 
# '''Discovery'''. Pantothenic acid was first isolated in 1938. Two years later researchers synthesized this vitamin in the laboratory.
 
# '''Discovery'''. Pantothenic acid was first isolated in 1938. Two years later researchers synthesized this vitamin in the laboratory.
 
# '''Measurement'''. Pantothenic acid is measured in milligrams.
 
# '''Measurement'''. Pantothenic acid is measured in milligrams.
Line 208: Line 208:  
# '''Effects of excess'''. Diarrhea is the only symptom thus far shown to result when excess pantothenic acid is taken.
 
# '''Effects of excess'''. Diarrhea is the only symptom thus far shown to result when excess pantothenic acid is taken.
   −
===== Biotin =====
+
==== Biotin ====
    
# '''Discovery'''. The discovery of biotin was made when large quantities of raw eggs were fed to animals before World War II. Scientists found that raw egg whites contain avidin, a substance that inactivates biotin. The diet high in raw eggs therefore led to development of deficiency symptoms in animals.
 
# '''Discovery'''. The discovery of biotin was made when large quantities of raw eggs were fed to animals before World War II. Scientists found that raw egg whites contain avidin, a substance that inactivates biotin. The diet high in raw eggs therefore led to development of deficiency symptoms in animals.
Line 219: Line 219:  
# '''Effects of excess'''. The effects of excess biotin have not yet been described.
 
# '''Effects of excess'''. The effects of excess biotin have not yet been described.
   −
===== Vitamin B12 =====
+
==== Vitamin B12 ====
 
# '''Discovery'''. Vitamin B12 was not identified until 1955. Long before, in the early 1920's, foods high in this vitamin (such as liver) were used in cases of pernicious anemia.
 
# '''Discovery'''. Vitamin B12 was not identified until 1955. Long before, in the early 1920's, foods high in this vitamin (such as liver) were used in cases of pernicious anemia.
 
# '''Measurement'''. Amounts of this vitamin are expressed in micrograms.
 
# '''Measurement'''. Amounts of this vitamin are expressed in micrograms.
Line 230: Line 230:  
# '''Effects of excess'''. The effect of taking too much vitamin B12 has not been described.
 
# '''Effects of excess'''. The effect of taking too much vitamin B12 has not been described.
   −
===== Folic Acid =====
+
==== Folic Acid ====
    
# '''Discovery'''. An unknown organic substance, distinct from all other vitamins, was found in the early 20th century to be necessary for animal health. In the 1940s the chemical structure of folic acid was described. The name comes horn folium, Latin for leaf, since folic acid is present in such great amounts in green leaves.
 
# '''Discovery'''. An unknown organic substance, distinct from all other vitamins, was found in the early 20th century to be necessary for animal health. In the 1940s the chemical structure of folic acid was described. The name comes horn folium, Latin for leaf, since folic acid is present in such great amounts in green leaves.
Line 266: Line 266:  
No. Although excesses of vitamins C and B will be eliminated rapidly from the body, there will be damage to the body before and during their elimination.
 
No. Although excesses of vitamins C and B will be eliminated rapidly from the body, there will be damage to the body before and during their elimination.
   −
=== Article #1: Caution: Megavitamins May Be Dangerous To Your Health ===
+
== Article #1: Caution: Megavitamins May Be Dangerous To Your Health ==
 
by Dr. Alan Immerman, D.C.
 
by Dr. Alan Immerman, D.C.
   Line 303: Line 303:  
Once you find out what your problem is, I have one bit of advice: Don’t try megavitamins for a solution. If they give you any relief, it will only be symptomatic: the cause of your problem will remain untouched. And the megavitamins may cause even further disruption of your health because of the many harmful side effects they can have.
 
Once you find out what your problem is, I have one bit of advice: Don’t try megavitamins for a solution. If they give you any relief, it will only be symptomatic: the cause of your problem will remain untouched. And the megavitamins may cause even further disruption of your health because of the many harmful side effects they can have.
   −
=== Article #2: Vitamins And Disease Causation By Marti Fry ===
+
== Article #2: Vitamins And Disease Causation By Marti Fry ==
 
Conventional medical practice attributes disease causation to: 1) bacteria or viruses; 2) hereditary or genetic disorders; or 3) deficiencies of vitamins or other nutrients. They do not blame disease causation on the habits and lifestyles of people who get diseases—except in the cases of deficiency diseases. Food supplements are supposed to solve the problems (“cure” the diseases) resulting from nutrient deficiencies. Sometimes nutrient-rich foods are also or instead recommended. For example, oranges or tomatoes may be recommended in cases of vitamin C deficiency or carrots or other orange foods for vitamin A deficiency, etc. However, with the popularity of food supplements today, especially among “alternative health groups,” but also among conventional practitioners, pills are more often prescribed or recommended.
 
Conventional medical practice attributes disease causation to: 1) bacteria or viruses; 2) hereditary or genetic disorders; or 3) deficiencies of vitamins or other nutrients. They do not blame disease causation on the habits and lifestyles of people who get diseases—except in the cases of deficiency diseases. Food supplements are supposed to solve the problems (“cure” the diseases) resulting from nutrient deficiencies. Sometimes nutrient-rich foods are also or instead recommended. For example, oranges or tomatoes may be recommended in cases of vitamin C deficiency or carrots or other orange foods for vitamin A deficiency, etc. However, with the popularity of food supplements today, especially among “alternative health groups,” but also among conventional practitioners, pills are more often prescribed or recommended.
   Line 312: Line 312:  
The idea of getting more vitamins, protein or other nutrients to prevent or overcome diseases is erroneous. Most diseases are not deficiency diseases as so many people believe today. Also, vitamins are not specific detoxifying substances that assist the body in eliminating its pathogenic toxic load. In massive amounts they are like drugs that add to the body’s toxic load and must be expelled. In normal amounts as supplied in wholesome, raw foods, they play many varied roles. It is really foolish to tamper with normal body functioning in any way, including the use of vitamin supplements which do not go to the root—do not deal with the cause—of disease any more than do drugs or medications.
 
The idea of getting more vitamins, protein or other nutrients to prevent or overcome diseases is erroneous. Most diseases are not deficiency diseases as so many people believe today. Also, vitamins are not specific detoxifying substances that assist the body in eliminating its pathogenic toxic load. In massive amounts they are like drugs that add to the body’s toxic load and must be expelled. In normal amounts as supplied in wholesome, raw foods, they play many varied roles. It is really foolish to tamper with normal body functioning in any way, including the use of vitamin supplements which do not go to the root—do not deal with the cause—of disease any more than do drugs or medications.
   −
=== Article #3: Why RDAs Are Too High by T.C. Fry ===
+
== Article #3: Why RDAs Are Too High by T.C. Fry ==
 
Before entering into a discussion of how RDAs are set, it is appropriate to distinguish between Recommended Dietary Allowance (RDA) and Minimum Daily Requirement (MDR). These are not the same, though MDRs are usually set unduly high, as are the RDAs.
 
Before entering into a discussion of how RDAs are set, it is appropriate to distinguish between Recommended Dietary Allowance (RDA) and Minimum Daily Requirement (MDR). These are not the same, though MDRs are usually set unduly high, as are the RDAs.
   Line 329: Line 329:  
Why get into a meaningless numbers game when all that we need in nutrients to repleteness is amply furnished with a great margin of safety by a modest diet consisting mostly of fresh fruits with some vegetables, nuts, seeds and perhaps some dried fruit. All, of course, must be eaten in the raw or live state to assure nutrient integrity on the one hand and non-toxicity on the other.
 
Why get into a meaningless numbers game when all that we need in nutrients to repleteness is amply furnished with a great margin of safety by a modest diet consisting mostly of fresh fruits with some vegetables, nuts, seeds and perhaps some dried fruit. All, of course, must be eaten in the raw or live state to assure nutrient integrity on the one hand and non-toxicity on the other.
   −
=== Article #4: Vitamin B-12 And Your Diet By Dr. Alan Immerman ===
+
== Article #4: Vitamin B-12 And Your Diet By Dr. Alan Immerman ==
 
If you do not eat animal foods of any kind your fears about dietary deficiency in this highly publicized vitamin will be allayed by this report.
 
If you do not eat animal foods of any kind your fears about dietary deficiency in this highly publicized vitamin will be allayed by this report.
   Line 380: Line 380:  
It is important to emphasize that deficiency may be present only if a person has low blood vitamin B12 levels plus illness associated with vitamin B12 deficiency. Indications of a low vitamin B12 level by itself will not interfere with attaining a long and healthy life with full capacity for normal reproduction. The contrary has never been proven to be so, unless the deficiency is accompanied by illness as discussed above.
 
It is important to emphasize that deficiency may be present only if a person has low blood vitamin B12 levels plus illness associated with vitamin B12 deficiency. Indications of a low vitamin B12 level by itself will not interfere with attaining a long and healthy life with full capacity for normal reproduction. The contrary has never been proven to be so, unless the deficiency is accompanied by illness as discussed above.
   −
=== Article #5: Do We Need To Take Vitamins? By Alan M. Immerman, D.C. ===
+
== Article #5: Do We Need To Take Vitamins? By Alan M. Immerman, D.C. ==
 
A few months ago I picked up a copy of a promotional magazine in a health food store. This magazine, Better Nutrition, contained an article entitled “The Care and Feeding of Vitamins,” which addressed itself to the need for taking daily vitamin supplements. Since this is a subject about which I get many questions, I thought I would discuss this issue. The article on vitamins was in a question and answer form; I will give an alternative opinion in the same form.
 
A few months ago I picked up a copy of a promotional magazine in a health food store. This magazine, Better Nutrition, contained an article entitled “The Care and Feeding of Vitamins,” which addressed itself to the need for taking daily vitamin supplements. Since this is a subject about which I get many questions, I thought I would discuss this issue. The article on vitamins was in a question and answer form; I will give an alternative opinion in the same form.
   Line 420: Line 420:  
Also, there are many possible sources of harm from megadoses of vitamins, even the water soluble ones such as vitamin C and the B complex. Therefore, avoid these.
 
Also, there are many possible sources of harm from megadoses of vitamins, even the water soluble ones such as vitamin C and the B complex. Therefore, avoid these.
   −
=== Article #6: Anti-vitamins And Vitamin Antagonists By Marti Fry ===
+
== Article #6: Anti-vitamins And Vitamin Antagonists By Marti Fry ==
    
==== Definition ====
 
==== Definition ====
Line 491: Line 491:  
This has been only a partial listing of a few specific vitamin antagonists or anti-vitamins. In reality, any substance that is not food of our biological adaptation and any living practice that is not in accord with our physiological needs is a vitamin antagonist—in fact, a nutrient antagonist. All substances and practices not normal (physiologically, not in the commonly-used meaning of what is widely practiced) to humans interferes with normal functioning, including the normal use of vitamins in the body.
 
This has been only a partial listing of a few specific vitamin antagonists or anti-vitamins. In reality, any substance that is not food of our biological adaptation and any living practice that is not in accord with our physiological needs is a vitamin antagonist—in fact, a nutrient antagonist. All substances and practices not normal (physiologically, not in the commonly-used meaning of what is widely practiced) to humans interferes with normal functioning, including the normal use of vitamins in the body.
   −
=== Article #7: What To Do About Vitamin Antagonists By Marti Fry ===
+
== Article #7: What To Do About Vitamin Antagonists By Marti Fry ==
 
If you’ve read any popular health books or magazines, you’ve no doubt heard about vitamin antagonists, or anti-vitamins. They are portrayed as “thieves out for the highest stakes: your health and well-being.” They are described as criminals. However, while these descriptions may make for colorful writing, they do not point to the real culprits. Even worse, they point their readers to harmful and ineffective solutions to the problem.
 
If you’ve read any popular health books or magazines, you’ve no doubt heard about vitamin antagonists, or anti-vitamins. They are portrayed as “thieves out for the highest stakes: your health and well-being.” They are described as criminals. However, while these descriptions may make for colorful writing, they do not point to the real culprits. Even worse, they point their readers to harmful and ineffective solutions to the problem.
   Line 502: Line 502:  
The best way (and the only healthy way) to deal with the problem of vitamin antagonists is to stay away from the physicians, hospitals, pharmacies, etc. that prescribe and sell drugs and medications. We should also do the best we can to live in a healthful environment and lead a stress-free lifestyle. The idea that we can counteract the harmful effects of drugs and other stresses with the use of vitamin and/or mineral supplements is entirely erroneous. A proper diet and lifestyle will simultaneously supply the nutrients we need and include no vitamin antagonists or anti-vitamins. Health results from healthful living—that’s a fact to keep in mind at all times!
 
The best way (and the only healthy way) to deal with the problem of vitamin antagonists is to stay away from the physicians, hospitals, pharmacies, etc. that prescribe and sell drugs and medications. We should also do the best we can to live in a healthful environment and lead a stress-free lifestyle. The idea that we can counteract the harmful effects of drugs and other stresses with the use of vitamin and/or mineral supplements is entirely erroneous. A proper diet and lifestyle will simultaneously supply the nutrients we need and include no vitamin antagonists or anti-vitamins. Health results from healthful living—that’s a fact to keep in mind at all times!
   −
=== Article #8: Factors That Lower Vitamin Needs By T. C. Fry ===
+
== Article #8: Factors That Lower Vitamin Needs By T. C. Fry ==
 
Healthy people require less of all nutrients because their bodies make more efficient use of them. Not only that, but healthy people eat wholesome foods that furnish more nutrients. Thus, their needs are lower and their supplies are simultaneously higher than that of unhealthy people.
 
Healthy people require less of all nutrients because their bodies make more efficient use of them. Not only that, but healthy people eat wholesome foods that furnish more nutrients. Thus, their needs are lower and their supplies are simultaneously higher than that of unhealthy people.
   Line 527: Line 527:  
Vitamin intake is greater on a proper diet, while vitamin need decreases on several accounts. The big bonus is increased body efficiency that makes better use of nutrients.
 
Vitamin intake is greater on a proper diet, while vitamin need decreases on several accounts. The big bonus is increased body efficiency that makes better use of nutrients.
   −
=== Article #9: Factors That Interfere With Vitamin Utilization And The Applicable Principles By T.C. Fry ===
+
== Article #9: Factors That Interfere With Vitamin Utilization And The Applicable Principles By T.C. Fry ==
 
You can read much in conventional health magazines about smokers requiring more vitamin C, about alcoholics requiring more B-Complex vitamins and so on. Peddlers of vitamins highlight greater need for vitamins by those on drugs, both habitual and medical, in order to induce drug users to purchase vitamin supplements. However, vitamin utilization is the least of the ill effects of drug habits, whether they be alcohol, tobacco, coffee, condiments and seasonings, medicinal, recreational or internally created drugs from the toxicity of retained metabolic wastes.
 
You can read much in conventional health magazines about smokers requiring more vitamin C, about alcoholics requiring more B-Complex vitamins and so on. Peddlers of vitamins highlight greater need for vitamins by those on drugs, both habitual and medical, in order to induce drug users to purchase vitamin supplements. However, vitamin utilization is the least of the ill effects of drug habits, whether they be alcohol, tobacco, coffee, condiments and seasonings, medicinal, recreational or internally created drugs from the toxicity of retained metabolic wastes.
  

Navigation menu