Changes

From Terrain Wiki
Jump to navigationJump to search
Line 102: Line 102:     
==== Vitamin A ====
 
==== Vitamin A ====
# '''Discovery'''. This fat-soluble vitamin was discovered by McCollum and Davis of the University of Wisconsin and by Osborne and Mendel of Yale University in 1913. They found that rats on a diet with lard as the only source of fat developed eye problems and failed to grow. It was later found that a shortage of carotene, the yellow pigment of plants, led to the development of these problems. Carotene is converted into vitamin A within the organism.
+
# '''Discovery:''' This fat-soluble vitamin was discovered by McCollum and Davis of the University of Wisconsin and by Osborne and Mendel of Yale University in 1913. They found that rats on a diet with lard as the only source of fat developed eye problems and failed to grow. It was later found that a shortage of carotene, the yellow pigment of plants, led to the development of these problems. Carotene is converted into vitamin A within the organism.
# '''Measurement'''. Vitamin A is measured in international units. A complicated formula exists whereby micro-grams (1/millionth gram) of vitamins are converted into international units (IUs). Amounts of vitamin A in foods and requirements for this vitamin are expressed as IUs.
+
# '''Measurement:''' Vitamin A is measured in international units. A complicated formula exists whereby micro-grams (1/millionth gram) of vitamins are converted into international units (IUs). Amounts of vitamin A in foods and requirements for this vitamin are expressed as IUs.
# '''Chemistry'''. Vitamin A is relatively stable to heat but is easily destroyed by ultraviolet radiation (as in sunlight). Chemically, it occurs in many forms: retinal, retinol and retinoic acid.
+
# '''Chemistry:''' Vitamin A is relatively stable to heat but is easily destroyed by ultraviolet radiation (as in sunlight). Chemically, it occurs in many forms: retinal, retinol and retinoic acid.
# '''Physiology'''. Most dietary vitamin A is in the form of carotene, the yellow pigment of plants. About half of the carotene consumed is converted into vitamin A in the body and the other half is utilized as a hydrocarbon. Because vitamin A is fat-soluble, if the diet is devoid of fat, or if too little bile is secreted by the liver (bile is needed to digest fat), or if too little thyroid hormone is secreted, there will be poor absorption of vitamin A in the intestines. This vitamin is stored in the liver.
+
# '''Physiology:''' Most dietary vitamin A is in the form of carotene, the yellow pigment of plants. About half of the carotene consumed is converted into vitamin A in the body and the other half is utilized as a hydrocarbon. Because vitamin A is fat-soluble, if the diet is devoid of fat, or if too little bile is secreted by the liver (bile is needed to digest fat), or if too little thyroid hormone is secreted, there will be poor absorption of vitamin A in the intestines. This vitamin is stored in the liver.
# '''Functions'''. Vitamin A is used by the body in many important ways. The body needs it to maintain normal vision in dim light. Vitamin A is also needed for synthesis of mucus, a secretion the body uses to maintain the health of membranes lining the eyes, mouth and gastrointestinal, respiratory and genitourinary tracts. When enough vitamin A is present, when other nutrients are sufficient, and when the body is not toxic, these membranes will be in a high state of health. However, if there is not a vitamin A deficiency, taking more of this vitamin will not protect the body from diseases nor “cure” diseases. This is a myth that has been scientifically disproven many times.  Vitamin A is also needed for normal skeletal and tooth development, for formation of sperm, for the normal progression of the reproductive cycle of the female, for formation of the adrenal hormone cortisone from cholesterol, and for maintenance of the stability of all cell membranes.
+
# '''Functions:''' Vitamin A is used by the body in many important ways. The body needs it to maintain normal vision in dim light. Vitamin A is also needed for synthesis of mucus, a secretion the body uses to maintain the health of membranes lining the eyes, mouth and gastrointestinal, respiratory and genitourinary tracts. When enough vitamin A is present, when other nutrients are sufficient, and when the body is not toxic, these membranes will be in a high state of health. However, if there is not a vitamin A deficiency, taking more of this vitamin will not protect the body from diseases nor “cure” diseases. This is a myth that has been scientifically disproven many times.  Vitamin A is also needed for normal skeletal and tooth development, for formation of sperm, for the normal progression of the reproductive cycle of the female, for formation of the adrenal hormone cortisone from cholesterol, and for maintenance of the stability of all cell membranes.
# '''Requirements'''. Male adults need 5000 IU's, female adults 4000 IU's, pregnant or lactating females 5000 IU's and infants about 1/10th the adult requirement of vitamin A per day. Infant needs are easily supplied by breast milk.
+
# '''Requirements:''' Male adults need 5000 IU's, female adults 4000 IU's, pregnant or lactating females 5000 IU's and infants about 1/10th the adult requirement of vitamin A per day. Infant needs are easily supplied by breast milk.
# '''Sources'''. Healthful sources of vitamin A include dark green leafy vegetables(lettuce and other greens), green stem vegetables (broccoli, asparagus), yellow or orange vegetables (carrots, etc.) and yellow or orange fruits (peaches, cantaloupe, etc.).
+
# '''Sources:''' Healthful sources of vitamin A include dark green leafy vegetables(lettuce and other greens), green stem vegetables (broccoli, asparagus), yellow or orange vegetables (carrots, etc.) and yellow or orange fruits (peaches, cantaloupe, etc.).
# '''Effects of deficiency'''. A deficiency of vitamin A is rare in the U.S. and is usually only seen in chronic diarrhea from colitis and other such diseases, liver disease or use of mineral oil. A deficient person manifests night blindness and degeneration of membranes (eye, nose, sinuses, middle ear, lungs, genitourinary tract).
+
# '''Effects of deficiency:''' A deficiency of vitamin A is rare in the U.S. and is usually only seen in chronic diarrhea from colitis and other such diseases, liver disease or use of mineral oil. A deficient person manifests night blindness and degeneration of membranes (eye, nose, sinuses, middle ear, lungs, genitourinary tract).
# '''Effects of Excess'''. Intake of excess vitamin A results in toxicity (poisoning), causing a loss of appetite, increased irritability, drying and flaking of skin, loss of hair, bone and joint pain, bone fragility, headaches and enlargement of liver and spleen. An overdose of this vitamin is about 50,000 IUs per day in adults and 20,000 IU's in infants.
+
# '''Effects of Excess:''' Intake of excess vitamin A results in toxicity (poisoning), causing a loss of appetite, increased irritability, drying and flaking of skin, loss of hair, bone and joint pain, bone fragility, headaches and enlargement of liver and spleen. An overdose of this vitamin is about 50,000 IUs per day in adults and 20,000 IU's in infants.
    
==== Vitamin D ====
 
==== Vitamin D ====
Line 163: Line 163:  
# '''Physiology and functions:''' This important vitamin plays a crucial role in the body’s energy-producing processes. In the body, when glucose is burned in the cells, energy is produced. This energy is stored when an organic substance named ATP is produced. Vitamin B1 is needed for the formation of ATP.
 
# '''Physiology and functions:''' This important vitamin plays a crucial role in the body’s energy-producing processes. In the body, when glucose is burned in the cells, energy is produced. This energy is stored when an organic substance named ATP is produced. Vitamin B1 is needed for the formation of ATP.
 
# '''Requirements:''' The requirement for vitamin B1 is approximately 1/2mg daily for infants  and children, 1-1.5 mg daily for adults.
 
# '''Requirements:''' The requirement for vitamin B1 is approximately 1/2mg daily for infants  and children, 1-1.5 mg daily for adults.
# '''Sources'''. If mainly fruits and vegetables are eaten, as we recommend, significant  amounts of vitamin B1 will be supplied. Other sources are nuts, seeds, sprouted legumes and sprouted grains. When grains are refined, much of the vitamin B1 (and other vitmins) is lost.
+
# '''Sources'''. If mainly fruits and vegetables are eaten, as we recommend, significant  amounts of vitamin B1 will be supplied. Other sources are nuts, seeds, sprouted legumes and sprouted grains. When grains are refined, much of the vitamin B1 (and other vitamins) is lost.
 
# '''Effects of Deficiency:''' A deficiency of vitamin B1 results in serious breakdown of cellular metabolism. Manifestations of this breakdown include fatigue, emotional upsets, appetite loss, weakness, vomiting and abdominal pain, heart failure and nervous system destruction (generalized weakness and/or paralysis occur). Again, it is essential to note that there are many other causes of these problems. If the diet contains enough vitamin B1, these problems will not be helped by getting more of this vitamin.
 
# '''Effects of Deficiency:''' A deficiency of vitamin B1 results in serious breakdown of cellular metabolism. Manifestations of this breakdown include fatigue, emotional upsets, appetite loss, weakness, vomiting and abdominal pain, heart failure and nervous system destruction (generalized weakness and/or paralysis occur). Again, it is essential to note that there are many other causes of these problems. If the diet contains enough vitamin B1, these problems will not be helped by getting more of this vitamin.
 
# '''Effects of excess:''' The problems which develop when excess vitamin B1 is consumed have not been investigated. We can be sure, however, that problems will result when “megadoses” are ingested.
 
# '''Effects of excess:''' The problems which develop when excess vitamin B1 is consumed have not been investigated. We can be sure, however, that problems will result when “megadoses” are ingested.
Line 205: Line 205:  
# '''Requirements:''' Four to seven mg of pantothenic acid per day will fulfill the body’s needs in both adults and children.
 
# '''Requirements:''' Four to seven mg of pantothenic acid per day will fulfill the body’s needs in both adults and children.
 
# '''Source:''' Sources of pantothenic acid include fruits, vegetables, sprouted legumes and  grains.
 
# '''Source:''' Sources of pantothenic acid include fruits, vegetables, sprouted legumes and  grains.
# '''Effects of deficienc:''' A deficiency of pantothenic acid has been observed only in laboratory animals. This vitamin is widely available in common foods so that deficiency outside of the laboratory is unlikely. Symptoms of deficiency include vomiting, fatigue, a feeling of generalized sickness, pain in the abdomen, burning cramps, personality changes and blood abnormalities.
+
# '''Effects of deficiency:''' A deficiency of pantothenic acid has been observed only in laboratory animals. This vitamin is widely available in common foods so that deficiency outside of the laboratory is unlikely. Symptoms of deficiency include vomiting, fatigue, a feeling of generalized sickness, pain in the abdomen, burning cramps, personality changes and blood abnormalities.
# '''Effects of exces:''' Diarrhea is the only symptom thus far shown to result when excess pantothenic acid is taken.
+
# '''Effects of excess:''' Diarrhea is the only symptom thus far shown to result when excess pantothenic acid is taken.
    
==== Biotin ====
 
==== Biotin ====
Line 332: Line 332:  
If you do not eat animal foods of any kind your fears about dietary deficiency in this highly publicized vitamin will be allayed by this report.
 
If you do not eat animal foods of any kind your fears about dietary deficiency in this highly publicized vitamin will be allayed by this report.
   −
Do we get enough vitamin B12? This is a major concern to people who consume no animal foods (vegans). Much of their worry arises from the wide publicity given to statements like the following which appeared in the prestigious journal, Nutrition Reviews: “Strict vegetarianism in western countries is a form of food faddism which can have serious consequences” due to the possibility of a vitamin B12 deficiency. What are the facts?
+
Do we get enough vitamin B12? This is a major concern to people who consume no animal foods (vegans). Much of their worry arises from the wide publicity given to statements like the following which appeared in the prestigious journal, Nutrition Reviews: “Strict vegetarianism in western countries is a form of food faddism which can have serious consequences” due to the possibility of a vitamin B12 deficiency.  
 +
 
 +
'''What are the facts?'''
    
First of all, it cannot be said that vegans consume too little vitamin B12 unless it can be shown they have a definite deficiency of this vitamin. Therefore, in order to understand the facts, we must decide how we will determine who is deficient. To be diagnosed as having a dietary deficiency of vitamin B12, all the following five criteria must be fulfilled:
 
First of all, it cannot be said that vegans consume too little vitamin B12 unless it can be shown they have a definite deficiency of this vitamin. Therefore, in order to understand the facts, we must decide how we will determine who is deficient. To be diagnosed as having a dietary deficiency of vitamin B12, all the following five criteria must be fulfilled:
Line 340: Line 342:  
# Normal absorption of vitamin B12.
 
# Normal absorption of vitamin B12.
 
# Presence of sickness specifically associated with a vitamin B12 deficiency; a specific  type of anemia (megaloblastic) and/or nervous system degeneration.
 
# Presence of sickness specifically associated with a vitamin B12 deficiency; a specific  type of anemia (megaloblastic) and/or nervous system degeneration.
# Elimination of the signs and symptoms of such sickness following consumption of a  small amount of vitamin B12-containing food.  The finding of a vitamin B12-deficient state without fulfillment of every one of these criteria cannot be blamed solely on the diet. This is because all of the following can also cause a vitamin B12 deficiency: stomach disease (interferes with production of intrinsic factor, a chemical necessary for normal absorption of vitamin B12), intestinal dis-ease (may interfere with normal absorption), kidney or liver disease (may increase loss of vitamin B12 from the body), use of alcohol or tobacco, use of some drugs such as neomycin and oral contraceptives and a multitude of other problems. Unless these problems are ruled out by fulfillment of the five criteria, a dietary cause of a vitamin B12 deficiency cannot be diagnosed.
+
# Elimination of the signs and symptoms of such sickness following consumption of a  small amount of vitamin B12-containing food.   
 +
The finding of a vitamin B12-deficient state without fulfillment of every one of these criteria cannot be blamed solely on the diet. This is because all of the following can also cause a vitamin B12 deficiency: stomach disease (interferes with production of intrinsic factor, a chemical necessary for normal absorption of vitamin B12), intestinal dis-ease (may interfere with normal absorption), kidney or liver disease (may increase loss of vitamin B12 from the body), use of alcohol or tobacco, use of some drugs such as neomycin and oral contraceptives and a multitude of other problems. Unless these problems are ruled out by fulfillment of the five criteria, a dietary cause of a vitamin B12 deficiency cannot be diagnosed.
    
Let’s take a few examples. Say a 58-year-old man on a vegan diet goes to his doctor with signs of nervous system disease. It comes out in the history that this person is a vegan so the doctor presumes that the disease is from dietary vitamin B12 deficiency and prescribes large doses of vitamin B12 supplements. But, without investigation of this person’s ability to absorb vitamin B12, his disease cannot be said to come from dietary deficiency alone. He could have pernicious anemia—deficiency of the intrinsic factor needed for absorption.
 
Let’s take a few examples. Say a 58-year-old man on a vegan diet goes to his doctor with signs of nervous system disease. It comes out in the history that this person is a vegan so the doctor presumes that the disease is from dietary vitamin B12 deficiency and prescribes large doses of vitamin B12 supplements. But, without investigation of this person’s ability to absorb vitamin B12, his disease cannot be said to come from dietary deficiency alone. He could have pernicious anemia—deficiency of the intrinsic factor needed for absorption.
Line 383: Line 386:  
A few months ago I picked up a copy of a promotional magazine in a health food store. This magazine, Better Nutrition, contained an article entitled “The Care and Feeding of Vitamins,” which addressed itself to the need for taking daily vitamin supplements. Since this is a subject about which I get many questions, I thought I would discuss this issue. The article on vitamins was in a question and answer form; I will give an alternative opinion in the same form.
 
A few months ago I picked up a copy of a promotional magazine in a health food store. This magazine, Better Nutrition, contained an article entitled “The Care and Feeding of Vitamins,” which addressed itself to the need for taking daily vitamin supplements. Since this is a subject about which I get many questions, I thought I would discuss this issue. The article on vitamins was in a question and answer form; I will give an alternative opinion in the same form.
   −
==== I eat a good diet, why should I lake vitamins or other supplements? ====
+
'''I eat a good diet, why should I lake vitamins or other supplements?'''
 +
 
 
'''ANSWER:''' The Better Nutrition article (to be referred to as BN) stated that “your idea of a ‘good diet’ may not include all the essential nutrients” and that with pollution, stress, chronic illness, drugs and food of low nutritional value (presumably from conventional farming methods), it is reasonable that “a number of distinguished nutrition experts” believe that we should take supplements.
 
'''ANSWER:''' The Better Nutrition article (to be referred to as BN) stated that “your idea of a ‘good diet’ may not include all the essential nutrients” and that with pollution, stress, chronic illness, drugs and food of low nutritional value (presumably from conventional farming methods), it is reasonable that “a number of distinguished nutrition experts” believe that we should take supplements.
   Line 392: Line 396:  
Finally, in all respect for the “distinguished nutrition experts” who believe that supplements are needed, it would be far preferable to choose the proper foods; many equally distinguished experts support this position.
 
Finally, in all respect for the “distinguished nutrition experts” who believe that supplements are needed, it would be far preferable to choose the proper foods; many equally distinguished experts support this position.
   −
==== How much do I need of vitamins and minerals? ====
+
'''How much do I need of vitamins and minerals?'''
 +
 
 
'''ANSWER:''' (BN) Official recommended dietary allowances (RDAs)...are for perfectly healthy 22-year-old men and women...anyone not perfectly healthy and not 22 years of age may need more.
 
'''ANSWER:''' (BN) Official recommended dietary allowances (RDAs)...are for perfectly healthy 22-year-old men and women...anyone not perfectly healthy and not 22 years of age may need more.
    
'''MY ANSWER:''' This statement in BN poorly reflects the intent of the National Research Council in establishing the RDAs. The RDAs are for the vast majority of people, not for a small group. In setting these figures, the National Research Council estimated the requirements of the nutrients and then established recommended intakes in excess of requirements so as to “exceed the requirements of most individuals.” The RDAs have even been criticized as too light in some cases! In any case, it is quite easy on a properly chosen diet to far exceed the recommended intake of vitamins. There is no need for nutrients in pill form.
 
'''MY ANSWER:''' This statement in BN poorly reflects the intent of the National Research Council in establishing the RDAs. The RDAs are for the vast majority of people, not for a small group. In setting these figures, the National Research Council estimated the requirements of the nutrients and then established recommended intakes in excess of requirements so as to “exceed the requirements of most individuals.” The RDAs have even been criticized as too light in some cases! In any case, it is quite easy on a properly chosen diet to far exceed the recommended intake of vitamins. There is no need for nutrients in pill form.
   −
==== Isn’t it possible to get too much of vitamins or minerals? ====
+
'''Isn’t it possible to get too much of vitamins or minerals?'''
 +
 
 
'''ANSWER:''' (BN) Not if you take reasonable amounts ... there is no record of any damage from large amounts of vitamin E. Vitamin C and the B vitamins, being water soluble, are excreted harmlessly if you happen to take more than you need.
 
'''ANSWER:''' (BN) Not if you take reasonable amounts ... there is no record of any damage from large amounts of vitamin E. Vitamin C and the B vitamins, being water soluble, are excreted harmlessly if you happen to take more than you need.
   Line 404: Line 410:  
Also, to state that there is no danger from large doses of vitamins E, C and the B complex is to display ignorance of present scientific knowledge. Megadoses of niacin (B3) may damage the liver, raise the blood sugar and uric-acid levels and cause other problems. Megadoses of vitamin C may cause: irritation (leading to diarrhea), kidney stones, problems with mineral metabolism (iron, copper, calcium and phosphorus), and possibly infertility and fetal death. Large doses of vitamin E may elevate the blood fats (high blood fat levels are associated with heart disease), interfere with vitamin A and iron metabolism, interfere with thyroid gland function and cause severe fatigue, perhaps due to muscle damage.
 
Also, to state that there is no danger from large doses of vitamins E, C and the B complex is to display ignorance of present scientific knowledge. Megadoses of niacin (B3) may damage the liver, raise the blood sugar and uric-acid levels and cause other problems. Megadoses of vitamin C may cause: irritation (leading to diarrhea), kidney stones, problems with mineral metabolism (iron, copper, calcium and phosphorus), and possibly infertility and fetal death. Large doses of vitamin E may elevate the blood fats (high blood fat levels are associated with heart disease), interfere with vitamin A and iron metabolism, interfere with thyroid gland function and cause severe fatigue, perhaps due to muscle damage.
   −
I have heard that some vitamins are incompatible with others and will cancel out their good effects, so they should not be taken together.
+
'''I have heard that some vitamins are incompatible with others and will cancel out their good effects, so they should not be taken together.'''
    
'''ANSWER:''' (BN) Basically, take your supplements and don’t worry about it.
 
'''ANSWER:''' (BN) Basically, take your supplements and don’t worry about it.
Line 410: Line 416:  
'''MY ANSWER:''' When one tries to provide proper nutrition by extracting nutrients from food and taking them in various proportions and quantities, there is indeed a risk of creating imbalances. The best way to supply vitamins to the body is to eat them as nature provided them: in foods.
 
'''MY ANSWER:''' When one tries to provide proper nutrition by extracting nutrients from food and taking them in various proportions and quantities, there is indeed a risk of creating imbalances. The best way to supply vitamins to the body is to eat them as nature provided them: in foods.
   −
Should old people and children take vitamins?
+
'''Should old people and children take vitamins?'''
    
'''ANSWER:''' (BN) “To produce strong bones, teeth, muscles and perfectly functioning organs,” children should take vitamins. “Old age is stress...so taking supplements is even more important.”
 
'''ANSWER:''' (BN) “To produce strong bones, teeth, muscles and perfectly functioning organs,” children should take vitamins. “Old age is stress...so taking supplements is even more important.”
Line 421: Line 427:     
== Article #6: Anti-vitamins And Vitamin Antagonists By Marti Fry ==
 
== Article #6: Anti-vitamins And Vitamin Antagonists By Marti Fry ==
 +
'''Definition'''
   −
==== Definition ====
   
An anti-vitamin is simply “a substance that makes a vitamin ineffective.” A vitamin antagonist is essentially the same thing as an anti-vitamin. It is a substance that lessens or negates the chemical action of a vitamin in the body.
 
An anti-vitamin is simply “a substance that makes a vitamin ineffective.” A vitamin antagonist is essentially the same thing as an anti-vitamin. It is a substance that lessens or negates the chemical action of a vitamin in the body.
    
Following are some examples of anti-vitamins, or vitamin antagonists.
 
Following are some examples of anti-vitamins, or vitamin antagonists.
   −
==== Some Antagonists of a Few Specific Vitamins Vitamin A Antagonists ====
+
'''Some Antagonists of a Few Specific Vitamins Vitamin A Antagonists'''
 +
 
 
Blood-thinning medications and other drugs, including aspirin, phenobarbitol, arsenicals and dicumarol (a drug used medically to retard blood clotting), destroy vitamin A in the body.
 
Blood-thinning medications and other drugs, including aspirin, phenobarbitol, arsenicals and dicumarol (a drug used medically to retard blood clotting), destroy vitamin A in the body.
    
Vitamin A is also depleted when nitrosamines are formed in the stomach from the union of nitrites with secondary amines and when the mucous membranes of our respiratory passages are exposed to air pollutants (carbon monoxide, ozone, sulphur dioxide, nitrogen dioxide, lead, hydrocarbons, etc.) In addition, mineral oil used as a laxative absorbs vitamin A and carotene (a naturally-occurring substance in foods which is used by the body to make vitamin A), thereby destroying it.
 
Vitamin A is also depleted when nitrosamines are formed in the stomach from the union of nitrites with secondary amines and when the mucous membranes of our respiratory passages are exposed to air pollutants (carbon monoxide, ozone, sulphur dioxide, nitrogen dioxide, lead, hydrocarbons, etc.) In addition, mineral oil used as a laxative absorbs vitamin A and carotene (a naturally-occurring substance in foods which is used by the body to make vitamin A), thereby destroying it.
   −
==== Vitamin K Antagonists ====
+
'''Vitamin K Antagonists'''
 +
 
 
The amount of vitamin K needed by humans is very small, and a deficiency is highly unlikely because this vitamin is in a wide variety of commonly eaten plant foods and is synthesized by bacteria in the intestinal tract. However, antibiotic therapy (the taking of any antibiotics such as penicillin, streptomycin, tetracyclin, Chloromycin, Terramycin, etc.) suppresses bacterial growth and, consequently, the synthesis of vitamin K.
 
The amount of vitamin K needed by humans is very small, and a deficiency is highly unlikely because this vitamin is in a wide variety of commonly eaten plant foods and is synthesized by bacteria in the intestinal tract. However, antibiotic therapy (the taking of any antibiotics such as penicillin, streptomycin, tetracyclin, Chloromycin, Terramycin, etc.) suppresses bacterial growth and, consequently, the synthesis of vitamin K.
    
Other vitamin K antagonists include the drugs dicumarol and hydrocoumarol, which are used by medical people to relieve thrombosis (abnormal formation of blood clots in the blood vessels). Because the chemical structure of these anti-vitamins is similar to that of vitamin K, they act as anticoagulants by interfering with the synthesis of pro-thrombin and the other natural clotting factors.
 
Other vitamin K antagonists include the drugs dicumarol and hydrocoumarol, which are used by medical people to relieve thrombosis (abnormal formation of blood clots in the blood vessels). Because the chemical structure of these anti-vitamins is similar to that of vitamin K, they act as anticoagulants by interfering with the synthesis of pro-thrombin and the other natural clotting factors.
   −
==== Vitamin C Antagonists ====
+
'''Vitamin C Antagonists'''
 +
 
 
It is well known that cigarette smokers have lower vitamin C levels than nonsmokers. A Canadian physician, Dr. W. J. McCormick, tested the blood levels of vitamin C in nearly 6,000 smokers. All had below normal readings. the March 9, 1963, issue of Lancet, similar findings are revealed by a group of three researchers. Frederick Klenner, M.D., has been quoted for many years as saying that a single cigarette can deplete as much as thirty-five milligrams of vitamin C from the body. (Calcium and phosphorus, both minerals, are also depleted in cigarette smokers.)
 
It is well known that cigarette smokers have lower vitamin C levels than nonsmokers. A Canadian physician, Dr. W. J. McCormick, tested the blood levels of vitamin C in nearly 6,000 smokers. All had below normal readings. the March 9, 1963, issue of Lancet, similar findings are revealed by a group of three researchers. Frederick Klenner, M.D., has been quoted for many years as saying that a single cigarette can deplete as much as thirty-five milligrams of vitamin C from the body. (Calcium and phosphorus, both minerals, are also depleted in cigarette smokers.)
    
Because vitamin C reacts with any alien substance in the bloodstream, all drugs and pollutants can be considered to be vitamin C antagonists. Some of the foremost vitamin C antagonists include ammonium chloride, stribesterol, thiouracil, atropine, barbituates and antihistamines. Alcoholic beverages are also vitamin C antagonists, as are all stresses (surgery, emotional outbursts and upsets, acute pressures, extremes of heat and cold and all drugs).
 
Because vitamin C reacts with any alien substance in the bloodstream, all drugs and pollutants can be considered to be vitamin C antagonists. Some of the foremost vitamin C antagonists include ammonium chloride, stribesterol, thiouracil, atropine, barbituates and antihistamines. Alcoholic beverages are also vitamin C antagonists, as are all stresses (surgery, emotional outbursts and upsets, acute pressures, extremes of heat and cold and all drugs).
   −
==== B Vitamin Antagonists ====
+
'''B Vitamin Antagonists'''
 +
 
 
Cortisone is an antagonist of vitamin B6 (pyridoxine). Since the body needs B vitamins to metabolize sugars, B vitamins are depleted when refined sugar or flour is consumed because refined sugar and flour, are devoid of B vitamins that existed in the beet,
 
Cortisone is an antagonist of vitamin B6 (pyridoxine). Since the body needs B vitamins to metabolize sugars, B vitamins are depleted when refined sugar or flour is consumed because refined sugar and flour, are devoid of B vitamins that existed in the beet,
   Line 455: Line 465:  
The most potent folacin (folic acid) antagonist is aminopterin. This substance has been used in the medical treatment of leukemia, a disease in which there is a marked increase in the production of leucocytes (white blood cells). Though aminopterin has, in some cases, resulted in a temporary relief (remission) of leukemia, it does not “cure” this disease. This is because there are no “cures;” there is only body healing—and anti-vitamins interfere with body healing but never help it.
 
The most potent folacin (folic acid) antagonist is aminopterin. This substance has been used in the medical treatment of leukemia, a disease in which there is a marked increase in the production of leucocytes (white blood cells). Though aminopterin has, in some cases, resulted in a temporary relief (remission) of leukemia, it does not “cure” this disease. This is because there are no “cures;” there is only body healing—and anti-vitamins interfere with body healing but never help it.
   −
==== A Mineral Antagonist ====
+
'''A Mineral Antagonist'''
 +
 
 
Most, if not all, vitamin antagonists (all drugs and other stresses) are also mineral antagonists. A specific mineral antagonist is oxalic acid, which is present in too-large amounts in spinach, rhubarb, beets and beet greens, Swiss chard and chocolate. Oxalic acid is a calcium antagonist. Calcium binds the oxalic acid in the body in order to render this toxic acid harmless. In doing so, the calcium is unavailable for its normal uses in the body.
 
Most, if not all, vitamin antagonists (all drugs and other stresses) are also mineral antagonists. A specific mineral antagonist is oxalic acid, which is present in too-large amounts in spinach, rhubarb, beets and beet greens, Swiss chard and chocolate. Oxalic acid is a calcium antagonist. Calcium binds the oxalic acid in the body in order to render this toxic acid harmless. In doing so, the calcium is unavailable for its normal uses in the body.
   −
==== Some Specific Anti-vitamins Stresses Are Anti-vitamins ====
+
'''Some Specific Anti-vitamins Stresses Are Anti-vitamins'''
 +
 
 
All kinds of stresses are vitamin antagonists. Drugs are serious stress producers in the body because the body must exercise great effort in expelling them as quickly as possible, lest they damage tissues and cells and interfere too much with normal functioning. In addition, surgery, accidents, overly exhausting work or exercise, exposure to extreme’s of heat or cold, and emotions such as fear, hatred, anger, worry and grief all produce great stress on the body. The B vitamins (thiamin, niacin, folic acid, pantothenic acid and vitamin B12) and vitamin C, as well as proteins and minerals, are all depleted and/or unassimilable as a result of stresses on the body. But don’t think for a minute that the other vitamins can be properly or fully utilized when the body is under stress—they can’t!
 
All kinds of stresses are vitamin antagonists. Drugs are serious stress producers in the body because the body must exercise great effort in expelling them as quickly as possible, lest they damage tissues and cells and interfere too much with normal functioning. In addition, surgery, accidents, overly exhausting work or exercise, exposure to extreme’s of heat or cold, and emotions such as fear, hatred, anger, worry and grief all produce great stress on the body. The B vitamins (thiamin, niacin, folic acid, pantothenic acid and vitamin B12) and vitamin C, as well as proteins and minerals, are all depleted and/or unassimilable as a result of stresses on the body. But don’t think for a minute that the other vitamins can be properly or fully utilized when the body is under stress—they can’t!
   −
==== Aspirin Is An Anti-vitamin ====
+
'''Aspirin Is An Anti-vitamin'''
 +
 
 
Aspirin interferes with digestive processes and can result in stomach bleeding. It interferes with blood-clotting and lessens the ability of cells to absorb glucose for heat and energy. It depletes most, if not all, nutrients and results in especially high losses of vitamin C and the B vitamins plus the minerals calcium and potassium.
 
Aspirin interferes with digestive processes and can result in stomach bleeding. It interferes with blood-clotting and lessens the ability of cells to absorb glucose for heat and energy. It depletes most, if not all, nutrients and results in especially high losses of vitamin C and the B vitamins plus the minerals calcium and potassium.
   −
==== Antibiotics Are Anti-vitamins ====
+
'''Antibiotics Are Anti-vitamins'''
 +
 
 
Besides being a vitamin K antagonist, the antibiotic penicillin is also an anti-vitamin of vitamin B6. The antibiotic streptomycin is a folic acid antagonist and the antibiotic streptomycin inactivates manganese, a mineral which is needed for the functioning of many enzyme systems.
 
Besides being a vitamin K antagonist, the antibiotic penicillin is also an anti-vitamin of vitamin B6. The antibiotic streptomycin is a folic acid antagonist and the antibiotic streptomycin inactivates manganese, a mineral which is needed for the functioning of many enzyme systems.
   −
==== Diuretics Are Anti-vitamins ====
+
'''Diuretics Are Anti-vitamins'''
 +
 
 
Diuretics are drugs prescribed medically to promote weight reduction or to relieve pressure of retained fluids. Even so-called “natural” diuretics, including herbal types, are harmful, for all diuretics result in great losses of B vitamins, vitamin C, other vitamins, and the minerals potassium and magnesium. Diuretics would never be prescribed to anyone on a natural diet containing no rock salt or sea salt, as these salts are poisonous and cause the body to retain fluids to hold the salt in suspension so it doesn’t harm cells and tissues.
 
Diuretics are drugs prescribed medically to promote weight reduction or to relieve pressure of retained fluids. Even so-called “natural” diuretics, including herbal types, are harmful, for all diuretics result in great losses of B vitamins, vitamin C, other vitamins, and the minerals potassium and magnesium. Diuretics would never be prescribed to anyone on a natural diet containing no rock salt or sea salt, as these salts are poisonous and cause the body to retain fluids to hold the salt in suspension so it doesn’t harm cells and tissues.
   −
==== Laxatives Are Anti-vitamins ====
+
'''Laxatives Are Anti-vitamins'''
 +
 
 
All laxatives, including the herbal types, are vitamin antagonists. Mineral oil is perhaps the most devastating laxative. It absorbs vitamin A and carotene, as well as the other fat-soluble vitamins (vitamin D, vitamin E and vitamin K). It also absorbs calcium and phosphorus, carrying them out of the body. (Hospitals today still use mineral oil as a laxative for their patients, one of thousands of reasons why hospitals are anti-vital places.) Laxatives will never be used by people on a natural all-raw diet of fruits, vegetables, sprouts, nuts and seeds.
 
All laxatives, including the herbal types, are vitamin antagonists. Mineral oil is perhaps the most devastating laxative. It absorbs vitamin A and carotene, as well as the other fat-soluble vitamins (vitamin D, vitamin E and vitamin K). It also absorbs calcium and phosphorus, carrying them out of the body. (Hospitals today still use mineral oil as a laxative for their patients, one of thousands of reasons why hospitals are anti-vital places.) Laxatives will never be used by people on a natural all-raw diet of fruits, vegetables, sprouts, nuts and seeds.
   −
==== Soil, Air and Water Pollutants Are Anti-vitamins ====
+
'''Soil, Air and Water Pollutants Are Anti-vitamins'''
 +
 
 
Most people regard soil, air and water pollutants as “unavoidable” anti-vitamins that necessitate the use of vitamin supplementation. However, not only are the vitamins from fresh whole foods more than adequate to meet our needs when our diet is all or mainly raw foods of our biological adaptation (as described in the Life Science health system), but they will also meet our needs adequately despite our polluted air and water.
 
Most people regard soil, air and water pollutants as “unavoidable” anti-vitamins that necessitate the use of vitamin supplementation. However, not only are the vitamins from fresh whole foods more than adequate to meet our needs when our diet is all or mainly raw foods of our biological adaptation (as described in the Life Science health system), but they will also meet our needs adequately despite our polluted air and water.
   Line 488: Line 505:  
Anti-vitamins found in polluted air, especially city air, are carbon monoxide, hydrocarbons, lead, ozone, sulphur dioxide and nitrogen dioxide. Vitamin A and vitamin C are both depleted when the body is exposed to air containing these pollutants, as is vitamin E. Arsenic dust, found on commercially-grown produce, is an antagonist of the B vitamin PABA (para-aminobenzoic acid). This vitamin is important for the growth of valuable bacteria in the intestines, for the metabolism of proteins, for manufacture of red blood cells and for healthy skin and hair.
 
Anti-vitamins found in polluted air, especially city air, are carbon monoxide, hydrocarbons, lead, ozone, sulphur dioxide and nitrogen dioxide. Vitamin A and vitamin C are both depleted when the body is exposed to air containing these pollutants, as is vitamin E. Arsenic dust, found on commercially-grown produce, is an antagonist of the B vitamin PABA (para-aminobenzoic acid). This vitamin is important for the growth of valuable bacteria in the intestines, for the metabolism of proteins, for manufacture of red blood cells and for healthy skin and hair.
   −
==== Conclusion ====
+
'''Conclusion'''
 +
 
 
This has been only a partial listing of a few specific vitamin antagonists or anti-vitamins. In reality, any substance that is not food of our biological adaptation and any living practice that is not in accord with our physiological needs is a vitamin antagonist—in fact, a nutrient antagonist. All substances and practices not normal (physiologically, not in the commonly-used meaning of what is widely practiced) to humans interferes with normal functioning, including the normal use of vitamins in the body.
 
This has been only a partial listing of a few specific vitamin antagonists or anti-vitamins. In reality, any substance that is not food of our biological adaptation and any living practice that is not in accord with our physiological needs is a vitamin antagonist—in fact, a nutrient antagonist. All substances and practices not normal (physiologically, not in the commonly-used meaning of what is widely practiced) to humans interferes with normal functioning, including the normal use of vitamins in the body.
  

Navigation menu